论文部分内容阅读
针对图像识别中图像的特征信息,排除不确定因素的影响,提出了基于模糊神经网络和D-S证据理论的数据融合算法,并对图像识别为例进行了实例分析,验证了该方法的准确性。该方法先对输入图像进行数据分析,采用T-S模糊神经网络进行处理,再用D-S证据理论执行决策分析,最终得到识别精度较高的有效结果。
Aiming at the feature information of image in image recognition and eliminating the influence of uncertain factors, a data fusion algorithm based on fuzzy neural network and D-S evidence theory is proposed. An example of image recognition is given as an example to verify the accuracy of the method. The method first analyzes the input image data, processes the data by using T-S fuzzy neural network, and then conducts decision analysis using D-S evidence theory to finally obtain effective results with high recognition accuracy.