【摘 要】
:
为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Ent
【基金项目】
:
国家重点研发计划课题(2018YFC1602703),国家自然科学基金(61873006)。
论文部分内容阅读
为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了显著的成果,但食品领域等特定领域中的命名实体识别存在难以构建大量样本集、专用名词边界识别不准确等问题。针对这些问题,文中利用BERT得到字向量,
其他文献
现代安全关键性系统的软件规模和复杂性的快速增长给这类安全关键性软件系统的开发带来了很多挑战。传统文本文档的需求描述方法无法保证此类系统的开发进度和系统可靠性要求
新修订的《中国共产党统一战线工作条例》关于非公有制经济领域统战工作部分,体现了党的十八大以来习近平总书记关于非公有制经济发展、非公有制经济领域统战工作的新理念、
当前漏洞检测技术可以实现对小规模程序的快速检测,但对大型或路径条件复杂的程序进行检测时其效率低下。为实现复杂路径条件下的漏洞快速检测,文中提出了一种复杂路径条件下
深度学习方法已被广泛应用于恶意软件检测中并取得了较好的预测精度,但同时深度神经网络容易受到对输入数据添加细微扰动的对抗攻击,导致模型输出错误的预测结果,从而使得恶
在当今数字化时代,开源技术、开源软件和开源社区日益重要,而通过量化分析方法研究开源领域的问题也已经成为一个重要的趋势。开发者是开源项目中的核心,其贡献度的量化以及
在软件的开发测试部署过程中,调试工作耗费了开发人员非常多的精力和时间,有时一个很难被发现的错误会导致多次重启调试。反向调试是软件调试的一种技术,无需重启即可向后查