论文部分内容阅读
针对极限学习机(ELM)异常值敏感的问题,提出了一种基于p阶Welsch损失的鲁棒极限学习机。使用p阶Welsch损失代替常规ELM的均方误差损失,提高算法的鲁棒性;在目标函数中引入l1范数正则项,降低ELM网络模型的复杂度,增强模型的稳定性;采用快速迭代阈值收缩算法(FISTA)极小化目标函数,提升计算效率。对人工合成数据集和部分UCI回归数据集进行仿真,实验结果表明本文方法在鲁棒性、稳定性和训练时间上都具有很好的性能。