论文部分内容阅读
针对无迹滤波器(UKF)使用线性最小均方估计测量更新方法的不足,提出了一种易于工程实现的迭代测量更新方法.该方法多次使用状态的估计值代替预测值进行测量更新,能够得到更高精度的非线性估计.迭代时,每次使用标准UKF方法得到的均值和方差作为初始参数重新进行UT变换,从而能够得到更加准确逼近真实估计的采样点.仿真结果表明:基于迭代测量更新的UKF算法不仅具有无需计算雅可比矩阵的优点,而且具有较高的非线性近似精度和较高的运算效率,在相同数量级运算时间的情况下,其估计性能明显优于标准UKF和EKF等非线性滤波器.