基于随机子空间的多标签类属特征提取算法

来源 :计算机应用研究 | 被引量 : 14次 | 上传用户:quiet11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前多标签学习已广泛应用到很多场景中。在此类学习问题中,一个样本往往可以同时拥有多个类别标签。因为类别标签可能带有的特有属性(即类属属性)将更有助于标签分类,所以已经出现了一些基于类属属性的多标签学习算法。针对类属属性构造会导致属性空间存在冗余的问题,提出了一种多标签类属特征提取算法LIFT_RSM。该算法基于类属属性空间通过综合利用随机子空间模型及成对约束降维思想提取有效的特征信息,以达到提升分类性能的目的。在多个数据集上的实验结果表明,与若干经典的多标签算法相比,提出的LIFT_RSM算法能得到
其他文献
通过对Spark大数据平台以及Eclat算法的深入分析,提出了基于Spark的Eclat算法(即SPEclat)。针对串行算法在处理大规模数据时出现的不足,该方法在多方面进行改进:为减少候选项集支持度计数带来的损耗,改变了数据的存储方式;将数据按前缀进行分组,并划分到不同的计算节点,压缩数据的搜索空间,实现并行化计算。最终将算法结合Spark云计算平台的优势加以实现。实验表明该算法可在处理海量数据