论文部分内容阅读
目前中子照相图像的质量主要通过人类视觉系统(Human Visual System,HVS)来评估,而HVS无法作为中子成像系统优化参数的实时辅助。为了能够客观评价中子照相图像质量,以对中子成像系统参数优化提供辅助手段,采用残差网络(Residual Network,ResNet)模型,对中子照相图像进行无参考质量评价(No-reference Image Quality Assessment,NR-IQA)。首先对清晰的自然图像添加不同失真等级和失真类型的噪声,再利用梯度幅度相似性偏差(Gradi