论文部分内容阅读
目的提出一种在脑电信号采集过程中自动识别和剔除各种干扰的新方法。方法将独立分量分析(ICA)最大熵算法和非线性参数阅值设定相结合。首先对ICA最大熵算法进行自适应改进,并将其用于对包含肌电、眼动等各种干扰的19导脑电信号进行独立分量分解;然后对各独立成分进行3个参数的非线性分析,通过设定的阈值,自动识别出其中的伪迹成分;在去除识别出的各伪迹的独立成分后,将其余独立成分反投影到头皮各电极处,得到去除干扰后较为纯净的脑电信号。结果研究表明,基于盲源分离技术的自适应最大熵算法实现了脑电信号与其中所包含的多种干扰