论文部分内容阅读
针对BP网络的训练收敛速度慢,网络初值对学习性能影响比较大的缺陷,提出了一种基于RBF神经网络的故障诊断方法。介绍了RBF的网络结构和劫I练方法,并应用于凝汽器故障诊断中。通过对现有凝汽器运行中常见的典型故障及征兆集的分析,建立了完备的学习样本。通过实例证明,RBF网络训练速度快,分类性能良好,在故障诊断领域具有很好的实用性。