自适应不同条件的车牌检测算法

来源 :计算机应用研究 | 被引量 : 0次 | 上传用户:oolongge
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对不同条件下车牌检测速度慢和检测精度低的问题,提出了一种改进自适应形态闭和开操作的车牌检测算法。该算法首先采用局部直方图对车牌图像均衡化处理,使用自适应形态闭操作对所有灰度化区域进行平滑处理,之后引入局部自适应阈值处理,能得到平滑图像和被分离的车牌,最后采用形态学开操作,将外部区域和车牌数连接部分分离。实验结果表明,所提方法的检测精度高于其他算法,同时,平均检测时间少于其他算法,适合不同条件下实时车牌检测。
其他文献
提出一种基于深度置信网络(deep belief network,DBN)对本区域未来24 h的电离层临界频率f0F2预测的方法。对选取的数据集进行筛选,生成用于训练和测试的数据集;改进DBN基本单元的结构,以适应对连续型数据特征的提取与学习,再通过实验确定DBN的基本结构;最后利用训练数据集对改进后的网络进行训练,实现对f0F2值的预测。与实测值相比较,改进的DBN具有极佳的预测准确性;与浅层结