论文部分内容阅读
针对数值型数据能准确反应现实世界,但难以理解的问题,为了从数值型数据中挖掘出易于理解的知识,提出了基于数值型数据的模糊规则快速挖掘方法。该方法能从数值型数据中挖掘出一个零阶的Sugeno模糊规则,并采用一种启发式方法将这个零阶的Sugeno模糊规则的数值结论转变为两个带置信度的语言变量,并给出了规则库的存储结构。最后通过实例证明了这种快速模糊规则挖掘方法能避免复杂的数值型计算和能有效逼近非线性函数的优点.