论文部分内容阅读
理论地震图方法在地震震源过程的研究中得到了广泛的应用。为了研究震源过程的细节,必须利用近场地震资料的高频信息,但是在应用Haskell矩阵法计算近场理论地震图时,格林函数的高频成分的数值不稳定性是计算宽频域理论地震图的一个基本困难。因此,目前仅有不超过10Hz的算例。本研究采用Haskell矩阵的一种新的分解组合形式,在数值计算时有效地避免了在计算过程中数值结果的溢出,实现了近场理论地震图的宽频域计算。同时,由于利用了矩阵运算中的解析关系,减少了运算的次数,从而提高了计算的速度。根据本算法建立的Fortran程序,在Univoc-1100计算机上进行了数值检验。结果表明,计算得到的格林函数至少在0—40Hz频率域范围内仍保持良好的数值稳定性。本文给出的这种Haskell矩阵分解组合形式的矩阵元素简单,且具有一定的对称性。对于这种分解所包含的物理意义,将有待进一步深入研究。
The theoretical seismogram method has been widely used in the research of the earthquake source process. In order to study the details of the hypocenter process, the high-frequency information of near-field seismic data must be used. However, when using the Haskell matrix method to calculate the near-field theoretical seismograms, the numerical instability of the high-frequency components of the Green’s function is calculated from the broadband seismograms A basic difficulty Therefore, there are only a few examples that do not exceed 10Hz. In this study, we use a new decomposition and combination form of Haskell matrix, which effectively avoids overflow of numerical results in numerical calculation and achieves wide-band calculation of near-field theoretical seismograms. At the same time, due to the use of analytic relations in matrix operations, the number of operations is reduced, which increases the computational speed. The Fortran program based on this algorithm is numerically verified on the Univoc-1100 computer. The results show that the calculated Green function maintains good numerical stability at least in the frequency domain of 0-40 Hz. The matrix elements of the combined Haskell matrix decomposition presented in this paper are simple and have some symmetry. The physical meaning of this decomposition will be further studied.