论文部分内容阅读
深度信息获取是温室移动机器人实现自主作业的关键。该研究提出一种基于稠密卷积自编码器的无监督植株图像深度估计模型。针对因视角差异和遮挡而产生的像素消失问题,引入视差置信度预测,抑制图像重构损失产生的问题梯度,设计了基于可分卷积的稠密自编码器作为模型的深度神经网络。以深度估计误差、阈值精度等为判据,在番茄植株双目图像上开展训练和测试试验,结果表明,抑制问题梯度回传可显著提高深度估计精度,与问题梯度抑制前相比,估计深度的平均绝对误差和均方根误差分别降低了55.2%和33.0%,将网络预测的多尺度视差图接入