基于贝叶斯估计的短时空域扇区交通流量预测

来源 :西南交通大学学报 | 被引量 : 0次 | 上传用户:tu309
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为准确把握空域扇区流量分布态势及未来变化趋势,提出了一种基于贝叶斯估计的短时空域扇区交通流量预测方法.首先,通过解析空域系统内航空器原始雷达数据,提取各扇区历史运行信息,建立了多扇区聚合交通流模型;其次,采用贝叶斯估计理论对模型参数进行最优估计和动态更新,预测了空域扇区交通流量的未来演变趋势及其不确定范围;最后,选取国内5个典型繁忙扇区为例,以5 min为时间段,以未来1 h为预测范围,对所提预测方法进行了验证.研究结果表明:85%以上时段交通流量预测结果的绝对误差在3架以内,平均绝对误差均在2架次以内,预测结果的稳定性较好,可充分反映各空域扇区之间短时交通流的动态性和不确定性,符合空中交通的实际情况.
其他文献
为解决低频GPS数据条件下路段行程时间估计误差较大的问题,分析了车辆在道路交叉口影响区域的延误特征,根据两个相邻GPS点跨越一个或多个交叉口,以及跨越的交叉口影响区域內有无GPS点,划分了4种GPS分布类型,并设计了相应类型的基于交叉口延误计算的路段行程时间插值算法.以北京市八角地区实际GPS数据为例验证了本文算法,结果表明:在平峰和高峰时段,用本文算法计算的路段行程时间的平均绝对相对误差不超过1
微表情是一种不能自主控制和伪装的面部表情,其与诚信度的关系密切,具有持续时间短且难以识别的特征.为提高计算机自动识别微表情的准确性,提出一种基于差分能量图和中心化Gabor二值模式(centralized Gabor binary patterns,CGBP)的微表情识别方法.该方法首先利用差分法计算微表情序列的能量得到差分能量图,获得人脸面部肌肉相位的变化;其次将Gabor与中心二值模式CBP相
为解决内河集装箱码头大量等待作业的拖车引起港口外围交通要道阻塞的问题,通过优化拖车到达调度,采用非平稳泊松过程,模拟进港拖车到达规律,建立了适合珠三角内河集装箱码头