Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and B

来源 :Chinese Journal of Mechanical Engineering | 被引量 : 0次 | 上传用户:gaolei000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
For optimal design of mechanical clinching steel-aluminum joints, the back propagation(BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body.Genetic algorithm(GA) is adopted to optimize the back-propagation neural network connection weights.The training and validating samples are made by the BTM? Tog-L-Loc system with different technologic parameters.The training samples’ parameters and the corresponding joints’ mechanical properties are supplied to the artificial neural network(ANN) for training.The validating samples’ experimental data is used for checking up the prediction outputs.The calculation results show that GA can improve the model’s prediction precision and generalization ability of BP neural network.The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints.The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic Algorithm (GA) is adapted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM? Tog -L-Loc system with different technologic parameters. The training samples’ parameters and the corresponding joints’ mechanical properties are supplied to the artificial neural network (ANN) for training. Validating samples’ experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model’s prediction precision and generalization ability of BP neu ral network. the comparative analysis between the experimental data and the prediction outputs that that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.
其他文献
心理健康教育是当前和未来教育的需要,是社会发展的需要,也是人发展的需要.心理健康是人生发展的重要方面,幼儿心理健康尤应受到足够的重视.在幼儿健康教育中,偏重幼儿身体保
21世纪以来,社会和科技逐步向信息时代进步,人们越来越重视信息技术,信息技术在教学中也被逐步运用,PPT、flash动画等多媒体教学手段逐步进入课堂,被广泛接受.在现代化的教学
艺术高考的钢琴备考问题一直都是非常热门的话题,因为这对于考生的学习以及考生的未来都有着重要的影响.如何正确对待音乐钢琴高考,有效的积极准备备考,这是许多考生以及教师
近些年来,艺考热潮持续升温,音乐考生人数也在逐年增加,如何采取有效措施使学生在声乐考试中取得理想的成绩,是每个高考声乐指导教师都应当积极探讨的问题,本文主要从五方面
从物理学的角度上来看,乐器发声的原因在于乐器的运动,这种运动形式为机械运动,属于物理学中的声学范畴,由此表明乐器与声学之间存在着密切联系.本文对乐器的发声原理与物理
学生的音乐素质关系到学生演唱、演奏、欣赏等方面的水平.笔者对农村初中学生的音乐情况现状展开调查,旨在通过调查,了解学生对音乐教育的认识,音乐教育现状的评价,音乐价值
音乐欣赏课作为音乐教育中的基础课程,在音乐教育中占据重要的位置.但是在一部分的课程中,由于部分教师对音乐欣赏课程的片面理解,出现了与中小学音乐欣赏教学规律不相符的现
随着新课程理念在中学教学中的深入发展,为了提升农村初中音乐课堂教学的效果,需要采用新的教学方法和教学策略.一方面需要进行和谐师生关系的构建;另一方面需要充分的调动学
依据学生不同的体能及体育技能掌握程度,设定不同的学习目标,提升学生学习体育的兴趣.在实际教学中,高中体育教师用创设合理的体育竞赛,可刺激学生体育综合能力.让学生在团对
素质教育的大环境下,高中教育教学活动应当着重强调对于学生的全方面培养,强调学生各方面素质的提升.基于这一需求,本文重点探讨了中学音乐教学中如何提高学生的听觉感知能力