论文部分内容阅读
分析了K均值聚类算法(K-means)存在的不足和改进遗传算法的全局优化能力,提出一种基于改进遗传算法的文本聚类方法,该方法将原始文档转化成用向量空间模型来描述的文本向量,首先随机产生若干个文档向量作为初始聚类中心形成遗传算法的染色体种群,经过改进遗传算法的选择、交叉、变异进化运算,得到较为优化的K均值聚类算法的初始聚类中心。实验表明该算法文本聚类提高了查准率和查全率,算法的高效性也得到了验证。