论文部分内容阅读
现有的链路预测方法的数据来源主要是基于邻居、路径和随机游走的方法,使用的是节点相似性假设或者最大似然估计,尚缺少基于神经网络的链路预测研究。基于神经网络的一些研究表明,基于神经网络的DeepWalk网络表示学习算法可以更加有效地挖掘到网络中的结构特征,已有研究证明DeepWalk等同于分解目标矩阵。因此,提出了一种基于矩阵分解的DeepWalk链路预测算法(LPMF)。该算法首先基于矩阵分解的DeepWalk算法分解得到网络的表示向量;然后通过余弦相似度计算每对节点之间的相似度,构建目标网络的相似度矩阵;