地面超载对土钉墙工作性能影响的有限元分析

来源 :信阳师范学院学报:自然科学版 | 被引量 : 0次 | 上传用户:jane_89
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了揭示土钉墙在地面超载作用下的受力和变形规律,采用有限元方法,建立了整体三维有限元模型,模拟了某深基坑土钉支护的施工过程,分析了地面超载对开挖面水平位移、坑后地面沉降、坑底隆起以及土钉轴力的影响。结果表明:随着地面超载的增加,开挖面的水平位移、坑后地面沉降均近似呈线性增加,地面超载对坑底隆起的影响较小,地面超载对上部各排土钉轴力的影响要大于下部各排。
其他文献
研究了亚纯函数族的正规性,推广了涉及导数的亚纯函数族的正规定则,得到了涉及微分多项式的亚纯函数正规族的一个结果.即:设F为单位圆盘上的一族亚纯函数,α为任一非零有穷复数,k为
Hom-李代数可以看作是李代数的形变和推广.给出了复数域上所有三维保运算Hom-李代数的同构类.
构建了一类带有禁渔期的单种群渔业模型,讨论了周期解的存在性、唯一性和稳定性,指出在一个周期内,存在最优的禁渔期使得种群数量最大且渔获量最大.最后利用数值模拟验证了理
在“互联网+”浪潮推动下,我国互联网保险得到了快速发展,而新的保险产品开发滞后,产品同质化现象严重,已经无法完全满足广大群众多层次的需求。保险机构创新意识淡薄;缺乏新
研究一类带脉冲免疫和时滞的传染病模型.运用脉冲微分方程和积分方程的理论和方法,得到了系统的无病周期解,并证明了当阈值小于1即R*〈1时,系统的无病周期解是全局吸引的.