论文部分内容阅读
目的利用低秩矩阵恢复方法可从稀疏噪声污染的数据矩阵中提取出对齐且线性相关低秩图像的优点,提出一种新的基于低秩矩阵恢复理论的多曝光高动态范围(HDR)图像融合的方法,以提高HDR图像融合技术的抗噪声与去伪影的性能。方法以部分奇异值(PSSV)作为优化目标函数,可构建通用的多曝光低动态范围(LDR)图像序列的HDR图像融合低秩数学模型。然后利用精确增广拉格朗日乘子法,求解输入的多曝光LDR图像序列的低秩矩阵,并借助交替方向乘子法对求解算法进行优化,对不同的奇异值设置自适应的惩罚因子,使得最优解尽量集中在