基于CGWO优化高斯过程的工控入侵检测

来源 :计算机工程与设计 | 被引量 : 0次 | 上传用户:liaodoctor
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
工业控制系统的数据具有非线性、冗余特征多的特点,传统的入侵检测方法并不适用.为提高检测的准确率、降低漏报率,将应用范围最广的工控协议Modbus/TCP作为研究对象,提出CGWO-GP的检测模型.利用拉普拉斯特征映射(L E)在处理非线性数据上的优势处理工控数据;为避免检测模型参数陷入局部最优,提出基于柯西变异算子的灰狼优化算法(CGWO)对高斯过程(GP)参数进行优化.采用密西西比州立大学提出的工控标准数据集进行实验,与多种算法进行多组对比,实验结果表明,所提检测模型表现更优,准确率均值为98.96%,漏报率均值为0.44%,误报率均值为0.13%.
其他文献
为减少Io T中负载均衡时带来的服务时延,提出一种面向Io T的低时延云雾混合网络架构及其负载均衡策略.构建云雾混合网络,将物联网设备的有限功能要求应用程序合理分配到云和雾计算中;将物联网服务请求的均衡建模成一个优化问题,最小化服务请求的总时延,设计相应的约束条件;利用改进的蝙蝠算法(B A)求解云雾网络负载均衡优化问题,将每个边缘终端分配到距离最近的雾设备上,合理分配云雾计算资源,实现服务总时延最小.基于离散事件仿真器构建仿真模型对所提策略进行实验测试,结果表明相比于其它策略,所提策略的总时延降低了20