论文部分内容阅读
Affinity Propagation(AP)聚类算法将所有数据点作为潜在的聚类中心,在相似度矩阵的基础上通过消息传递进行聚类.与传统聚类方法相比,对于规模很大的数据集,AP是一种快速、有效的聚类方法.正是这样,属性约简对于AP算法非常重要.另外,在大规模并行系统的设计中,细粒度并行是实现高性能的基本策略.提出了一种基于改进属性约简的细粒度并行AP聚类算法(IRPAP),将粒度思想引入到并行计算中.首先分析了并行计算中的粒度原理.然后用改进的属性约简算法对数据集预处理.此算法并行计算并选择差别矩阵元素,