论文部分内容阅读
利用支持向量机分类器中支持向量分布的几何意义,构造了一种新的与样本分布相关的推广能力预测模型,该模型充分利用了支持向量分布的先验信息,它与统计学习理论中推广能力准则具有一致的几何意义。首先利用支持向量分布的几何意义出发从海量样本中选择有效边界向量代替原有训练样本,然后在有效边界向量中分别计算最小包含半径和最大分类间隔。它不需要求解二次规划就可以得到与训练样本相关的推广能力计算模型,计算量较低。本文最后的最优核函数、核参数选择仿真实验结果表明本文提出的基于几何分析的支持向量机推广能力推测模型的合理性与高效性