论文部分内容阅读
A study of the atmospheric photochemical reaction of CF3 radical with CO and O2 was performed by using a homemade ultraviolet photoelectron spectrometer-photoionization mass spectrometer (PES- PIMS). The electronic structures and mechanism of ionization and dissociation of CF3OC(O)OOC(O)- OCF3 were investigated. It was indicated that the two bands on the photoelectron spectrum of CF3OC(O)OOC(O)OCF3 are the result of ionization of an electron from a lone pair of oxygen and a fluo- rine lone pair of CF3 group. The outermost electrons reside in the oxygen lone pair. The experimental and theoretical first vertical ionization energy is 13.21 and 13.178 eV, respectively, with the PES and OVGF method. They are in good agreement. The photo ionization and dissociation processes were discussed with the help of theoretical calculations and PES-PIMS experiment. After ionization, the parent ions prefer the dissociation of the C-O bond and giving the fragments CF3OCO+ and CF3+. It demonstrated that the ultraviolet photoelectron and photoionization mass spectrometer could be ap- plied widely in the study of atmospheric photochemical reaction.
A study of the atmospheric photochemical reaction of CF3 radical with CO and O2 was performed by using a homemade ultraviolet photoelectron spectrometer-photoionization mass spectrometer (PES-PIMS). The electronic structures and mechanism of ionization and dissociation of CF3OC (O) OOC (O It was indicated that the two bands on the photoelectron spectrum of CF3OC (O) OOC (O) OCF3 are the result of ionization of an electron from lone pair of oxygen and a fluo rine lone pair of CF3 The outermost electrons reside in the oxygen lone pair. The experimental and theoretical first vertical ionization energy is 13.21 and 13.178 eV, respectively, with the PES and OVGF method. They are in good agreement. The photoionization and dissociation processes were discussed with the help of theoretical calculations and PES-PIMS experiment. After ionization, the parent ions prefer the dissociation of the CO bond and giving the fragments CF3OCO + and CF3 +. It describes that the ultraviolet photoelectron and photoionization mass spectrometer could ap aplied widely in the study of atmospheric photochemical reaction.