论文部分内容阅读
样本标记是一个重要但又比较耗时的过程。得到一个多标签分类器需要大量的训练样本,而手工为每个样本创建多个标签会存在一定困难。为尽可能降低标记样本的工作量,提出一种加权决策函数的主动学习方法,该方法同时考虑训练样本的数量和未知样本的置信度,使得分类器能在最小的成本下最快地达到比较满意的分类精度。