论文部分内容阅读
为了处理大量分布式存储的农业环境数据,提高农业生产效率,对高斯混合模型聚类算法进行了改进,提出了一种基于分布式聚类的农业环境数据异常检测方法.在Spark分布式计算框架下,首先对数据进行粗聚类,得到初始化模型;然后利用Spark迭代更新模型直至稳定,其中Map阶段将样本点分配到模型,Reduce阶段更新模型个数及参数;最后利用聚类结果,实现环境异常值的检测.实验结果表明该方法可行有效.