基于局部平滑性的通用增量流形学习算法

来源 :计算机应用 | 被引量 : 0次 | 上传用户:ydfang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前大多数流形学习算法无法获取高维输入空间到低维嵌入空间的映射,无法处理新增数据,因此无增量学习能力。而已有的增量流形学习算法大多是通过扩展某一特定的流形学习算法使其具备增量学习能力,不具有通用性。针对这一问题,提出了一种通用的增量流形学习(GIML)算法。该方法充分考虑流形的局部平滑性这一本质特征,利用局部主成分分析法来提取数据集的局部平滑结构,并寻找包含新增样本点的局部平滑结构到对应训练数据的低维嵌入坐标的最佳变换。最后GIML算法利用该变换计算新增样本点的低维嵌入坐标。在人工数据集和实际图像数
其他文献
针对水下图像的纹理细节模糊、对比度低以及图像光照不均问题,通过分析水下图像的成像过程,提出一种水下图像清晰化算法。在小波域的低频子带上结合水下图像光学成像模型,先利用高斯模糊对介质散射光进行估计与去除,再采用基于局部复杂度的方法调整衰减因子,对衰减低频子图进行自适应增强;在高频子带上采用非线性变换的增强方法,进一步增强了高频信息并有效地抑制了噪声的放大。实验结果表明该算法对解决水下图像模糊和光照不