论文部分内容阅读
针对加权非负矩阵分解中算法复杂度较高的问题,提出一种基于加权非负矩阵分解和双通道脉冲耦合神经网络的图像融合的改进算法。首先,对已经配准的两个源图像进行非下采样Shearlet变换;然后,对于图像低频子带,采用改进的WNMF的算法,动态更新权值矩阵,更好地提取图像特征信息。对于高频子带,采用改进双通道脉冲耦合神经网络的算法,链接强度值采用块的梯度值,更好地保留图像的微小细节信息;最后,经过非下采样Shearlet的逆变换得到融合图像。实验表明,将加权非负矩阵分解与双通道脉冲耦合神经网络相结合,不仅能很