论文部分内容阅读
面板堆石坝堆石体力学参数反演优化问题是一个多变量、多约束的混合非线性规划问题,当正演过程用神经网络模拟器替代后,高效快捷的优化算法成为解决问题的关键。提出一种用以解决这一复杂优化问题的混合算法——混沌直接搜索粒子群(CHPSO—DS)算法。在改进的算法中,首先结合混沌优化思想对粒子群进行初始化,减轻粒子初始位置的选择对算法优化性能的影响;利用直接搜索法克服了粒子群算法后期搜索效率降低的缺陷,提高算法局部搜索能力。为证明该算法的优越性,同时将该算法与遗传算法(GA)用于水布垭面板堆石坝堆石体力学参数的位移反