论文部分内容阅读
采用LMTO ASA能带计算方法 ,研究 (Si2 ) 3(2Al) 6 (0 0 1 ) ,(Ge2 ) 3(2Al) 6 (0 0 1 ) ,(Ge2 ) 3(2Au) 6 (0 0 1 )和 (Ge2 ) 3(2Ag) 6(0 0 1 )超晶格中半导体界面电荷Qss的生成机理 ,结果发现 ,金属 半导体相互接触时 ,接触界面处半导体原子与金属原子之间发生价电子重新分布和转移 ,导致半导体表面原子层偏离电中性而呈现出半导体界面净电荷Qss.该界面电荷Qss的生成与Tung新近提出的金属 半导体界面化学键的“化学键极化”模型物理实质大致相同 ,两者都能说明界面处金属原子和半导体原子整齐排列为单晶 (不涉及半导体表面态 )的Schottky势垒中仍然会生成界面电荷
(LM2) 3 (2Al) 6 (001), (Ge2) 3 (2Al) 6 (001), (Ge2) 3 (2Au) 6 (0 0 1) And (Ge2) 3 (2Ag) 6 (001) superlattices. The results show that when metal semiconductors come into contact with each other, valence electron redistribution occurs between the semiconductor atoms and the metal atoms at the contact interface And transfer, resulting in partial neutralization of the atomic layer of the semiconductor surface and presenting a net charge Qss of the semiconductor interface. The generation of this interfacial charge Qss is substantially the same as that of the “chemical bond polarization” model of the recently proposed metal-semiconductor interface chemical bond by Tung, Can explain that the Schottky barrier in which the metal atoms and the semiconductor atoms at the interface are neatly arranged as single crystals (no semiconductor surface states are involved) still generates interfacial charges