论文部分内容阅读
结合煤矿探测机器人,提出了一种井下气体危险度评估的新算法:首先利用粗集理论对煤矿井下环境的各类数据进行属性和对象约简,然后把简化后的样本数据输入到神经网络进行训练,利用其输出结果进行系统危险度预测和评价。该算法综合了粗集的简化功能与神经网络分类的强鲁棒性的优点,实验证明其模型结构简单,可有效地评估井下危险度,为环境安全评估建模提供了一种新的途径。