论文部分内容阅读
1978年,R. C. Merkle和M. E. Hellman提出了陷门背包公钥密码体制。由于他们采用的背包向量为超上升序列(superincreasing sequence,即对任意正整数i,有α_(i+1)>sum from i=1 to i(α_j),A.Shamir于1982年利用H.W.Lenstra,Jr.关于整数规划的强有力的算法成功地破译了这种背包码。本文提出,为防止破译,可采用非超上升序列,例如广义斐波那契数列作为陷门背包向量。
In 1978, R. C. Merkle and M. E. Hellman proposed trapdoor backpack public key cryptosystem. Because of the superincreasing sequence (ie, α_ (i + 1)> sum from i = 1 to i (α_j) for any positive integer i, A. Shamir used HWLenstra in 1982, Jr. A powerful algorithm for integer programming has successfully deciphered this kind of backpack code.This paper proposes that a non-ascending ascending sequence, such as a generalized Fibonacci sequence, can be used as a trapdoor backpack vector to prevent deciphering.