笑笑漫游数学世界之点的坐标

来源 :中学生数理化·七年级数学人教版 | 被引量 : 0次 | 上传用户:sidney1221
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  了解了象限是怎么回事,笑笑稍一思索,即有所悟。第一象限内点的横坐标与纵、坐标均是正数,第三象限内点的横、纵坐标均是负数,而第二、四象限内点的横、纵坐标则是一正一负。
  笑笑尝试了一会兒,就找到了办法。第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)。
  看笑笑洋洋得意的样子,原点毫不留情地给他泼了一头冷水。笑笑一愣,凝神再看再想,还真被他发现了问题之所在。
  坐标轴上的点的坐标规律应该是这样的:x轴正半轴(+,0),x轴负半轴(-,0),y轴正半轴(0,+),y轴负半轴(0,-),原点(0,0)。
  笑笑觉得象限内的点像是在院子里,而坐标轴上的点像是在院墙上’这让原点哭笑不得。
  笑笑定睛打量了一下原点,马上又有了新问题。
  原点在回答了笑笑的问题后,也给笑笑出了个难题,可没难住笑笑。
  对于平面内任意一点A,过点A分别在x轴、y轴作垂线,在x轴、y轴上的垂足依次对应实数a,b,有序数对(a,b)就是点A的坐标。
其他文献
众所周知,自党的十一届三中全会以来,拨乱反正,并为在“文革”中酿成的冤假错案平反昭雪,于是各级政府部门普遍设置了对群众上访的接待机构。确实有很多民间冤案,经上访后得
子曰:“三人行,必有我师焉。”同学们在学习的过程中一定要重视与同学之间的交流和讨论。  在复习课上,老师提出了一个问题。在平面直角坐标系中描出以下各点:A(-2,0),B(-1,3),C(2,2),D(2,-1)。顺次连接各点,得到四边形ABCD,计算这个四边形的面积。  我很快画出图1,但这个四边形不是长方形和正方形,也不是平行四邊形和梯形。怎么求面积呢?我尝试连接BD。虽然可以求出△BCD的面
笔者阅读了《中国学校体育》杂志2016年第12期王晓东、赵卫新两位老师的《排球垫球辅助练习器材的设计制作与应用》(以下简称原文)一文后,对文中的许多做法表示认同,但也存在几点不同认识,在此提出自己的看法与两位作者及各位同仁一起交流探讨、共同商榷。  一、原文对教材的重难点表述不够准确  通读原文笔者认为原文中教师将垫球技术重点定位于“垫球时上臂抬高至平与垫球部位准确,难点确立为垫球时上下肢协调配合
企业安全管理与企业经济效益是企业经营管理中众多矛盾的一个方面,在这方面的矛盾中,既存在如经济量那样的定量问题,又存在如价值观念等偏于定性的问题。这给矛盾的处理带来
农业发展银行各分支行的全体同志:今年入汛以来,我国部分地区遭受严重洪涝灾害,受灾省份涉及到湖北、湖南、江西、安徽、江苏、广西、福建、四川、广东、吉林、黑龙江、内蒙
一、列车途停事故树列车途停事故是我们铁路机务部门常发生的事故。编此事故树的目的就是为把主要原因找出来,有效地降低事故率,见图1。二、通信工高空作业时坠落事故树通信
反腐败是关系党和国家生死存亡的严重政治斗争。在邓小平理论的指导下,以江泽民同志为核心的党中央对党风廉政建设和反腐败斗争实行了坚强有力的领导,确定了反腐败的指导思
李仪祉先生,陝西省蒲城县人,是我国近代杰出的水利专家。先生生于1882年,1938年病逝,享年56岁。他在少年时代,曾經由陕西省送往德国学习铁路两年,回国后目睹陕西干旱,人民生
一、问题的提出探讨确定地下水临界深度,是防止灌区地下水上升造成盐渍化的设计和管理上的中心问题.地下水临界深度一般以土壤毛管水上升高度和作物容根唇厚度来确定.控制地
在“农业学大寨”群众运动深入发展的大好形势下,广大贫、下中农和农业技术人员对磷细菌肥料的生产和应用,在一些地区已形成热潮。在进一步总结经验,摸索规律,把生产和应用