论文部分内容阅读
为实现视频中手语的准确识别,提出一种基于深度图连续自适应均值漂移(DI_CamShift)和加速强健特征词包(SURF-BoW)的中国手语识别算法.该算法将Kinect作为手语视频采集设备,在获取彩色视频的同时得到其深度信息.算法首先计算深度图像中手语手势的主轴方向角和质心位置,通过调整搜索窗口对手势准确跟踪;然后使用基于深度积分图像的OTSU算法分割手势并提取其加速强健特征(SURF),进而构建SURF-BoW作为手语特征并使用SVM识别.通过实验验证该算法在单个手语字母上的最好识别率为99.37