论文部分内容阅读
目前变压器智能故障诊断大多是以油中溶解气体为特征对故障性质的诊断,缺乏对内部故障部位的分析及量化的诊断结果。针对上述问题,提出一种基于SVM的电力变压器内部故障部位的概率估计模型。该模型结合SVM与概率建模的优点,充分利用油中溶解气体和电气试验数据的互补信息,运用sVM后验概率理论,对变压器内部可能发生故障的部位进行概率估计,克服了标准svM硬判决输出的缺陷,以概率的形式给出诊断结论。通过实例分析表明,该模型不仅故障识别率较高,还具有良好的概率分布形态,具有较好的实用性和推广性。