论文部分内容阅读
针对种群多样性对粒子群算法的性能影响,提出了一种基于差异进化思想的粒子群算法。该算法采用多生态子群社会结构,利用一种新的全信息粒子作为信息交互的渠道,通过进化过程中的种群衰落监控指导子群间的差异融合,有利于优秀个体的产生,增加粒子间的差异性,提高种群整体品质和算法的收敛性能。最后对八个测试函数进行实验仿真,并与六个改进粒子群算法进行多方面对比。实验结果表明,该算法有效地保持了种群的多样性,在保证收敛速度的同时大幅提高了算法的收敛精度,从理论和实验仿真两个方面证明了算法有很强的全局搜索能力。