论文部分内容阅读
针对当前故障诊断中几种常用方法的不足,首次提出将支持向量机方法应用于滚动轴承技术故障诊断。该文提出的两种算法其核心均是利用支持向量机方法对样本进行分类。支持向量机方法基于小学习样本条件下,通过寻求结构风险最小,以期获得良好的分类效果和泛化能力。两种实验结果表明,在选用合适核函数及参数条件下,支持向量机具有学习速度快、诊断正确率高的优良性能,这一结论表明了该文所提出方法的优越性。