论文部分内容阅读
为了讨论一类奇异边值问题解的存在性问题,首先得出与所研究奇异边值问题等价的积分算子方程,其次证明积分算子是全连续算子,最后运用Leray-Schauder原理,在f:[0,1]×R^2→R满足Carathéodory条件且(1-t)e(t)∈L^1(0,1)时,解决了这类奇异二阶m-点边值问题解的存在性问题,并获得了该类问题至少存在一个解的充分条件.