论文部分内容阅读
根据社交媒体短文本特征改进了词袋模型,利用特征之间的语义关系提出了语义表示模型,采用句子中特征先后顺序构建了次序图模型,在此基础上引入时间因素,提出了基于Single-Pass算法的用户兴趣主题模型用于抽取微博用户关注的话题。实验结果表明,该方法的FM、AA和F指标相比FSC-LDA方法分别提高了200.40%、46.50%、80.05%。