基于混沌剑鱼算法的K_means算法

来源 :智能计算机与应用 | 被引量 : 0次 | 上传用户:t_bear
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统K-means聚类算法容易受到初始聚类中心影响,从而导致聚类准确度较差的问题,本文利用剑鱼优化算法全局搜索能力强、收敛速度快的优势,提出一种基于改进剑鱼算法的K-means聚类算法.为增强剑鱼优化算法全局搜索能力,采用Tent混沌序列初始化种群,利用Tent混沌序列遍历性、随机性和规律性提高初始解的质量;为了提升算法搜索的精度,引人高斯变异,以此增强算法局部搜索能力;为了促使算法在跳出限制后继续搜索,在搜索停滞的解的基础上生成Tent混沌序列,用Tent混沌序列对部分陷入局部最优的个体进行扰动.最后,在9个标准测试函数上进行仿真实验,验证了所提算法的优越性;通过与传统K_means聚类算法在UCI数据集上聚类结果的对比,证明所提出的聚类算法具有更好的聚类性能,可以有效降低初始聚类中心对K-means算法的影响.
其他文献
介绍了一种基于深度学习的计算机视觉应用方向——姿态识别,是基于PoseNet模型开发的一款实现人体姿态识别的Android应用.基于PoseNet模型实现的人体姿态识别更加轻量高效,具有很高的应用价值.讲解了姿态识别开发过程中关键技术的实现,包括姿态识别的基本处理过程与整体架构、PoseNet的网络模型结构、利用模型输出数据进行人体骨骼关键点的计算、安卓端界面的实现与绘制等内容.
近年来,随着人工智能中数据孤岛、数据隐私和安全等问题的逐步显现,联邦学习作为能解决上述问题的技术而被广泛关注,目前已被应用于金融、医疗等领域.介绍了联邦学习的定义、分类、国内外的开源架构,剖析了联邦学习中的用户隐私和数据安全,指出了联邦学习面临的困难与挑战,并做出了展望.