论文部分内容阅读
针对传统推荐方法中的数据稀疏性问题,常用的方法通常受到数据量的制约,因此采用灰色关联预测法计算方案评分数据间的相关系数,以预测空缺的评分数据;针对面向新用户的冷启动问题,考虑用户兴趣特征相似度和基于信任云的用户对方案评分的相似性,计算用户间的综合相似度,将合适的方案推荐给新用户。最后,以汽车方案推荐为例进行方法验证,并通过与协同过滤,云模型等推荐算法进行对比,证明了该方法的有效性。