论文部分内容阅读
传统的TF-IDF(Term Frequency&Inverse Documentation Frequency)算法提取的关键词不能合理地代表某疾病的症状,降低智能诊断系统的性能。对此,提出一种改进的TF-IDF算法,并将其应用在牛疾病诊断系统中。系统将用户描述的文本内容转换成向量的形式,用TF-IDF算法提取关键症状词,利用余弦定理和可信度计算给出可靠的疾病推荐和治疗方案。实验结果表明,该算法在疾病诊断中准确率和可信度两方面都具有更好的效果。与传统TF-IDF算法相比,平均可信度提高约4%。