论文部分内容阅读
为解决传统数据驱动模型的不足,使其能实现降雨径流过程高精度连续模拟,提出新型耦合数据驱动模型——PEK,即:基于偏互信息的输入变量选择、基于新型集成神经网络的出流量预测和基于K最近邻模型的出流量误差预测。PEK模型具有以下特点:(1)提出了基于分离式选择策略和滑窗累积雨量的模型候选输入向量,并与基于偏互信息的输入变量选择方法联合使用,提高了输入信息的充分性和无冗余性,对建立精度高、泛化能力强的高质量模型意义重大;(2)提出了新型集成神经网络——EBPNN及其率定方法。联合使用NSGA-II多目标优化算法和