论文部分内容阅读
针对大部分行为识别算法效率较低,难以应对大规模影像识别任务的问题,一方面,提出一种结合双流结构与多纤维网络的双流多纤维网络模型,分别以RGB序列、光流序列为输入提取视频的时空信息,然后将两条支路网络的识别结果进行决策相加,提高了对战场目标聚集行为的检测效率与识别准确率;另一方面,提出一种结合分离卷积思想与多纤维网络的双流分离卷积多纤维网络模型,进一步提高网络检测效率与抗过拟合能力。实验表明,在建立的情报影像仿真数据集中,上述算法能够有效识别出战场目标聚集行为,在大幅提升检测效率同时实现了识别准确率的提升。