An Improved Differential Evolution Trained Neural Network Scheme for Nonlinear System Identification

来源 :International Journal of Automation & Computing | 被引量 : 0次 | 上传用户:hyc1211
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This paper presents an improved nonlinear system identification scheme using di?erential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combined DE and LM training of the NN and suitably implementing it together with other system identification methods, namely NN and DE+NN on a number of examples including a practical case study. The identification results obtained through a series of simulation studies of these methods on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can yield better identification results in terms of time of convergence and less identification error. This paper presents an improved nonlinear system identification scheme using di? Erential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combination DE and LM training of the NN and fitness implementing it together with other system identification methods, both NN and DE + NN on a number of examples including a practical case study. The identification results obtained through a series of simulation studies of these methods on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can yield better identification results in terms of time of convergence and less identification error.
其他文献
随着社会的发展,人民生活水平的提高,对建筑供热、制冷的需求越来越大,而我国的一次性能源如煤、天燃气等资源却越来越少,节能减排减少雾霾已经成为我国的一项长期任务.
由国家工信部批准、中国制浆造纸研究院牵头的《漂白硫酸盐木浆》标准的起草/修订工作已正式启动。鉴于亚太森博(山东)浆纸有限公司在行业内的标杆水平、知名度及技术能力,该公
组织形式1.外方独资、中外合资林业公司。福莱斯林业有限公司、金华林业有限公司等是目前海南非公有制林业企业中规模大、组织程度高、管理比较规范的企业。尽管企业管理运
纪念2013年世界标准日,对年轻的中国塑木制品行业而言,更是多了一份自信,多了一层涵义.rn意义不一般rn10月11日,由中国塑料加工工业协会塑木制品专业委员会和南京市质量技术
由中国林业科学研究院资源昆虫研究所主持的国家林业局“94 8”项目“木豆新品种及栽培技术引进”于 2 0 0 1年 1 1月 30日在北京经专家组综合评审通过验收 ,并评为优秀。该
结合大功率数字式全电力炮控系统所用的升压变换装置(270 V/32 A)的研制,详细阐述了尖峰电压、偏磁现象、波形振荡产生的机理,并从理论上提出了解决上述问题的方法。研制过程
基于气象因子,使用一元线性回归、多元线性回归、一元非线性回归以及BP神经网络4种不同的回归模型对森林病虫鼠害发生率进行预测,结果表明:对于线性模型,多元线性回归模型的
当下,尽管中国作为全世界最火的建筑市场,但由于建筑的舒适度低、健康性不够,正承担着巨大的能源供应压力.在节能建筑成为未来建筑发展的主要方向后,暖通空调行业就成为建筑
全球领先的苯乙烯马来酸酐共聚物(SMA)制造商,荷兰Polyscope公司在2013 K展会上展出了采用XIRAN(R)玻璃增强级SMA与ABS混合材料制成的天窗框架,该框架已经用于雪铁龙DS3敞篷
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥