基于GAN–UNet的矿石图像分割方法

来源 :控制理论与应用 | 被引量 : 0次 | 上传用户:mugua220
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在选矿生产过程中,磨机给矿粒度对磨矿分级效率影响重大,是一个关键的控制参数.由于矿石表面不规则、棱线较多,同时存在矿石间堆叠的问题,给基于图像的矿石粒度检测带来极大困难.本文提出一种基于GAN–UNet的矿石图像分割方法,针对矿石图像棱线易引起矿石边缘错误识别的问题,采用生成对抗网络进行图像分割,将U–Net作为图像分割生成器网络,使用人工标记的矿石边缘图像作为真实图像,随后构建判别器网络以判断图像来源,同时将判别器误差与生成器误差通过加权形式引入网络训练中,直到判别器难以判断分割图像来源,获得满足
其他文献
针对移动装弹机械臂系统非线性、强耦合、受多种不确定因素影响的问题,本文基于自适应动态规划方法,提出了仅包含评价网络结构的轨迹跟踪控制方法,有效减小了系统跟踪误差.首先,考虑到系统非线性特性、变量间强耦合作用及重力因素的影响,通过拉格朗日方程建立了移动装弹机械臂的动力学模型.其次,针对系统存在不确定性上界未知的问题,建立单网络评价结构,通过策略迭代算法,求解哈密顿–雅可比–贝尔曼方程,基于李雅普诺夫稳定性理论,设计了自适应动态规划轨迹跟踪控制方法.最后,通过仿真实验将该控制方法与自适应滑模控制方法进行了对比