论文部分内容阅读
在选矿生产过程中,磨机给矿粒度对磨矿分级效率影响重大,是一个关键的控制参数.由于矿石表面不规则、棱线较多,同时存在矿石间堆叠的问题,给基于图像的矿石粒度检测带来极大困难.本文提出一种基于GAN–UNet的矿石图像分割方法,针对矿石图像棱线易引起矿石边缘错误识别的问题,采用生成对抗网络进行图像分割,将U–Net作为图像分割生成器网络,使用人工标记的矿石边缘图像作为真实图像,随后构建判别器网络以判断图像来源,同时将判别器误差与生成器误差通过加权形式引入网络训练中,直到判别器难以判断分割图像来源,获得满足