论文部分内容阅读
采用3层BP神经网络来预测炼钢成品的c、si、Mn成分,根据炼钢的实际生产数据,选取铁水、废钢、供氧、吹氩、硅锰合金、增碳剂等28个因素作为输入变量,对输入参数进行归一化处理,采取附加动量项和自适应学习步长的措施,解决了BP神经网络局部收敛和学习时间过长的问题,提高了神经网络预报的准确率,并用VC++语言编写程序。软件经生产现场运用后,模型预测结果表明:在规定的误差内(C±0.02%、Si±0.05%、Mn±0.06%),预报命中率达到85%以上,证明了模型的有效性。