论文部分内容阅读
工业用电加热炉作为一类大惯性、大时滞和参数时变的强非线性系统,其温度控制问题一直工业过程控制中的难题。提出一种新型的基于TSK模糊理论的模糊神经网络PID控制器,采用实数编码混沌量子遗传算法优化模糊神经网络的隶属函数参数和模糊TSK增益,具有较快的收敛速度和更强的优化能力。分析加热炉温度控制系统的原理和结构,阐述基于TSK模糊理论的模糊神经网络PID控制器的设计过程以及实数编码量子遗传算法的实现流程。通过工业用电加热炉的温度控制仿真和试验,验证了所提出的算法具有更好的动态性能、更高的稳态精度和更强的抗干扰能力。