论文部分内容阅读
在不影响泛化能力的情况下,针对现有的主要分块算法、大规模缩减策略和分解算法等内存占用较大、训练精度下降和收敛速度过慢等缺点,改进了现有的SMO算法,融合分块算法和分解算法,提出了最小序列分块算法(CSMO)。仿真结果表明,该算法与libsvm等现有的典型的支持向量机算法相比,能够减小内存占用,并能以很高的精度接近全局最优解。