论文部分内容阅读
目的研究不定方程x3±8=Dy2的可解性问题。方法利用初等及代数方法。结果设D是不含3和6k+1之形素因数的无平方因子正整数。当D〉5时,如果D的素因数p都满足P=1,3(mod8)或者p=5,7(rood8),则方程x3±8=Dy2没有适合gcd(x,y)=1的正整数解(x,y)。结论部分地解决了该方程的可解性问题。即对某些特殊D,该方程无解。