论文部分内容阅读
建立转子系统的扭矩激励与其电机电流耦合仿真模型,研究不同性质(阶跃、线性、暂态、正弦)扭矩激励下电机电流频谱特性,运用奇异值分解法剔除电流信号的工频成分,将除去工频成分后的不同性质扭矩激励下电机电流信号进行三层小波包分解生成能量谱特征向量,并设计优良性能的BP神经网络,将得到的电流信号的特征向量以及需要识别的扭矩激励类型输入BP神经网络训练,经试验数据验证表明:利用小波包能量谱和神经网络对转子系统电机电流分析可以实现转子系统扭矩激励的识别。