论文部分内容阅读
挖掘科学数据是当今数据库系统研究和应用领域内的一个热点问题。聚类是数据挖掘中的核心问题。K-中心算法的执行结果受到初始选择的中心点的影响,而且常常只能终止于局部最优,按照基于密度聚类算法的思想,聚类分析最终的中心点都是很“密的(dense)”点,结合这两种算法,如果初始选择的中心点就是“密的(dense)”点,并且这几个初始的中心点彼此相异度比较大,那就会减少算法执行的时间,并且提高聚类结果的准确度。